
User’s Guide

to

Elib - The Emacs Lisp Library

version 0.06

Inge Wallin

last updated 24 Jan 1993

Copyright c© 1991, 1992 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions that the section entitled “GNU ELIB GENERAL PUBLIC LICENSE” is included
exactly as in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage under the above conditions for modified versions, except that the section entitled
“GNU ELIB GENERAL PUBLIC LICENSE” may be included in a translation approved
by the author instead of in the original English.

1

GNU ELIB GENERAL PUBLIC LICENSE

The license agreements of most software companies keep you at the mercy of those com-
panies. By contrast, our general public license is intended to give everyone the right to
share GNU Elib. To make sure that you get the rights we want you to have, we need to
make restrictions that forbid anyone to deny you these rights or to ask you to surrender the
rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GNU
Elib, that you receive source code or else can get it if you want it, that you can change
GNU Elib or use pieces of it in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of GNU Elib, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for GNU Elib. If GNU Elib is modified by someone else and passed on, we
want its recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Therefore we make the following terms which say what you must do to be allowed to
distribute or change GNU Elib.

COPYING POLICIES

1. You may copy and distribute verbatim copies of GNU Elib source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy a valid copyright notice “Copyright c© 1992 Free Software Foundation (or with
whatever year is appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other recipients
of the GNU Elib program a copy of this License Agreement along with the program.
You may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GNU Elib or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the
files and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in
part contains or is a derivative of GNU Elib or any part thereof, to be licensed
at no charge to all third parties on terms identical to those contained in this
License Agreement (except that you may choose to grant more extensive warranty
protection to some or all third parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative)
on a volume of a storage or distribution medium does not bring the other program
under the scope of these terms.

2 Elib - The Emacs Lisp Library

3. You may copy and distribute GNU Elib (or any portion of it in under Paragraph 2) in
object code or executable form under the terms of Paragraphs 1 and 2 above provided
that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal shipping charge) a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Paragraphs
1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

For an executable file, complete source code means all the source code for all modules it
contains; but, as a special exception, it need not include source code for modules which
are standard libraries that accompany the operating system on which the executable
file runs.

4. You may not copy, sublicense, distribute or transfer GNU Elib except as expressly
provided under this License Agreement. Any attempt otherwise to copy, sublicense,
distribute or transfer GNU Elib is void and your rights to use the program under
this License agreement shall be automatically terminated. However, parties who have
received computer software programs from you with this License Agreement will not
have their licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GNU Elib into other free programs whose distribu-
tion conditions are different, write to the Free Software Foundation at 675 Mass Ave,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and
reuse of software.

Your comments and suggestions about our licensing policies and our software are wel-
come! Please contact the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, or call (617) 876-3296.

NO WARRANTY

BECAUSE GNU ELIB IS LICENSED FREE OF CHARGE, WE PROVIDE ABSO-
LUTELY NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE
STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE
SOFTWARE FOUNDATION, INC, INGE WALLIN AND/OR OTHER PARTIES
PROVIDE GNU ELIB "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GNU ELIB IS WITH YOU. SHOULD GNU ELIB PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

GNU ELIB GENERAL PUBLIC LICENSE 3

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL INGE WALLIN,
THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER PARTY WHO
MAY MODIFY AND REDISTRIBUTE GNU ELIB AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES,
OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS) GNU ELIB, EVEN IF YOU HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

5

1 Installation

This section describes the installation of Elib, the GNU emacs lisp library. You should
install not only the library itself, but also the on-line documentation so that your users will
know how to use it. You can create typeset documentation from the file elib.texinfo as
well as an on-line info file. The following steps are also described in the file INSTALL in the
source directory.

1.1 Installation of the elisp library

1. Edit the file Makefile to reflect the situation at your site. The only thing you will have
to change at this stage is the definition of LISPDIR. In this directory, a subdirectory
with the name elib will be created. All elisp files of the library will be copied there
when you do the actual installation (see step 2. below). We suggest you use your local
elisp directory (usually /usr/local/lib/elisp or something similar) for this.

2. Type ‘make install’ in the source directory. This will byte-compile all .el files of the
library and create the subdirectory elib in the directory you specified in step 1. It will
also copy both the .el and the .elc files of the library there.

If you don’t want to install the .el files but only the .elc files (the byte-compiled
files), you can type ‘make install_elc’ instead of ‘make install’.

If you only want to create the compiled elisp files, but don’t want to install them,
you can type ‘make elcfiles’ instead. This is what happens if you only type ‘make’
without parameters.

3. Edit the file default.el in your emacs lisp directory (usually /usr/gnu/emacs/lisp

or something similar) and enter the contents of the file elib-startup.el into it. This
file was created from the file startup_template.el by the make in step 2. It contains
an additional entry in the variable load-path, which determines the path where emacs
looks for elisp files (ending in .el or .elc).

1.2 Installation of the on-line manual.

1. Create the info file elib.info from elib.texinfo. If you have the makeinfo program,
you can do this by running it on elib.texinfo. Otherwise you can do it with emacs
by running these steps:

1. Read elib.texinfo into an emacs buffer.

2. Type ‘M-X texinfo-format-buffer’

3. Save the newly created info file elib.

2. Move the info file elib.info to your standard info directory. Usually this is is the
directory /usr/gnu/emacs/info or something similar. (See step 3 above).

3. Edit the file dir in the info directory and enter one line to contain a pointer to the info
file elib. The line can, for instance, look like this:

* Elib: (elib.info). The Emacs Lisp Library.

6 Elib - The Emacs Lisp Library

1.3 How to make typeset documentation from elib.texinfo

You can also make a typeset manual from the file elib.texinfo. To to this, you must have
the TeX text formatting program installed. Just follow these steps:

1. If the file texinfo.tex is not properly installed in the path given by the environment
variable TEXINPUTS, get it and put it in the same directory as elib.texinfo (the
source directory of elib). This file contains macros used by the TEX text formatting
program to produce typeset output from a texinfo file. You can get this from, e.g.,
prep.ai.mit.edu in the US or from isy.liu.se in Europe.

2. Run TEX by typing ‘tex elib.texinfo’. You might need to do this twice to get all
cross references correct. If you have the texindex program, you can create a sorted
index by typing ‘texindex elib.??’ between the two TEX passes. If you don’t do this,
you still get a typeset manual, but you will not get the index.

3. Convert the resulting device independent file elib.dvi to a form which your printer
can output and print it. If you have a postscript printer there is a program, dvi2ps,
which can do this. There is also a program which comes together with TEX, dvips,
which you can use.

7

2 What is Elib?

Elib, the GNU emacs lisp library, is a collection of elisp functions which you can use as
parts of your own elisp programs. Each file contains functions which have something in
common, e.g. they handle a certain data type.

Elib is designed to be both as efficient and as easy to use as possible. Each file in Elib
uses the elisp function provide to tell emacs when it has been loaded. To use the functions
in the file foo, you just have to put a line such as:

(require ’foo)

into your own elisp file. This will cause emacs to load the file foo.elc and evaluate
the functions in it. This, of course, requires that your system manager has installed Elib
properly on your system. See Chapter 1 [Installation], page 5, for more information.

2.1 Contributors to Elib

The following persons have made contributions to GNU Elib.

• Inge Wallin wrote most of the otherwise unattributed functions in Elib as well as all
documentation.

• Sebastian Kremer contributed the string functions.

• Thomas Bellman wrote some of the code for AVL trees.

• Per Cederqvist wrote the cookie package and the doubly linked list. The first design
of cookie.el was made by Inge Wallin.

2.2 Where can I get Elib?

There will probably be a number of sites archiving Elib. Currently the latest release can
always be fetched via anonymos ftp from isy.liu.se, (IP no. 130.236.1.3) in the directory
pub/gnu/elisp-programs, or from ftp.lysator.liu.se in pub/emacs.

9

3 Container Data Types

Container data types are data types which are used to hold and organize other data. Since
lisp is a dynamically typed language, any container data type can hold any other data type
or a mix of other data types. This is contrary to the case for C or C++ where all data in a
typical container must be of the same type.

As a convention do all names of the functions handling a certain container data type
begin in <type>-, i.e. the functions implementing the container data type foo all start with
foo-.

3.1 The Stack Data Type

The stack data type provides a simple LIFO stack. There are two implementations of a
stack in Elib, one using macros and one using functions. The names of the functions/macros
in the two implementations are the same, but the efficiency of using one or the other vary
greatly under different circumstances.

The implementation using macros should be used when you want to byte-compile your
own elisp program. This will be most efficient since byte-compiling an elisp function using
macros has the same effect as using inline code in C.

To use the stack data type, put the line

(require ’stack-f)

in your own elisp source file if you want to use the implementation using functions or

(require ’stack-m)

if you want to use the implementation using macros. This is the only difference between
them, so it is easy to switch between them during debugging.

The following functions are provided by the stack:

(stack-create)

Create a new empty stack.

(stack-p stack)

Return t if stack is a stack, otherwise return nil.

(stack-push stack element)

Push element onto stack.

(stack-pop stack)

Remove the topmost element from stack and return it. If stack is empty, return
nil.

(stack-empty stack)

Return t if stack is empty, otherwise return nil.

(stack-top stack)

Return the top element of stack, but don’t remove it from the stack. Return
nil if stack is empty.

(stack-nth stack n)

Return the nth element of stack where the top stack element has number 0. If
stack is not that long, return nil. The element is not removed from the stack.

10 Elib - The Emacs Lisp Library

(stack-all stack)

Return a list of all entries in stack with the topmost element first.

(stack-copy stack)

Return a copy of stack. All entries in stack are also copied.

(stack-length stack)

Return the number of elements in stack.

(stack-clear stack)

Remove all elements from stack.

3.2 The Queue Data Type

The queue data type provides a simple FIFO queue. There are two implementations of a
queue in Elib, one using macros and one using functions. The names of the functions/macros
in the two implementations are the same, but the efficiency of using one or the other vary
greatly under different circumstances.

The implementation using macros should be used when you want to byte-compile your
own elisp program. This will be most efficient since byte-compiling an elisp function using
macros has the same effect as using inline code in C.

To use the queue data type, put the line

(require ’queue-f)

in your own elisp source file if you want to use the implementation using functions or

(require ’queue-m)

if you want to use the implementation using macros. This is the only difference between
them, so it is easy to switch between them during debugging.

Not all functions in queue-m.el are implemented as macros, only the short ones. This
does not make it less recommendable to use the macro version in your compiled code.

The following functions are provided by the queue:

(queue-create)

Create a new empty queue.

(queue-p queue)

Return t if queue is a queue, otherwise return nil.

(queue-enqueue queue element)

Enter element last into queue.

(queue-dequeue queue)

Remove the first element from queue and return it.

(queue-empty queue)

Return t if queue is empty, otherwise return nil.

(queue-first queue)

Return the first element of queue or nil if it is empty. The element is not
removed from the queue.

Chapter 3: Container Data Types 11

(queue-nth queue n)

Return the nth element of queue, where the first element of queue has number
0. If the length of queue is less than n, return nil. The element is not removed
from the queue.

(queue-last queue)

Return the last element of queue or nil if it is empty. The element is not
removed from the queue.

(queue-all queue)

Return a list of all elements in queue. Return nil if queue is empty. The oldest
element in the queue is the first in the list.

(queue-copy queue)

Return a copy of queue. All entries in queue are also copied.

(queue-length queue)

Return the number of elements in queue.

(queue-clear queue)

Remove all elements from queue.

3.3 The Doubly Linked List Data Type

The doubly linked list is an efficient data structure if you need to traverse the elements on
the list in two directions, and maybe insert new elements in the middle of the list. You can
efficiently delete any element, and insert new elements, anywhere on the list.

A doubly linked list (dll for short) consists of a number of nodes, each containing exactly
one element. Some of the functions operate directly on the elements, while some manipulate
nodes. For instance, all of the functions that let you step forward and backwards in the list
handle nodes. Use the function dll-element to extract the element of a node.

To use the doubly linked list provided by Elib you must put the line

(require ’dll)

in your elisp source file.

3.3.1 Creating a Doubly Linked List

(dll-create)

Create an empty doubly linked list.

(dll-create-from-list list)

Given the ordinary lisp list list, create a doubly linked list with the same ele-
ments.

(dll-copy dll &optional element-copy-fnc)

Return a copy of the doubly linked list dll. If optional second argument element-
copy-fnc is non-nil it should be a function that takes one argument, an element,
and returns a copy of it. If element-copy-fnc is not given the elements them-
selves are not copied.

12 Elib - The Emacs Lisp Library

3.3.2 Entering elements in a dll

(dll-enter-first dll element)

Add an element first on a doubly linked list.

(dll-enter-last dll element)

Add an element last on a doubly linked list.

(dll-enter-after dll node element)

In the doubly linked list dll, insert a node containing element after node.

(dll-enter-before dll node element)

In the doubly linked list dll, insert a node containing element before node.

3.3.3 Accessing elements of a dll

(dll-element dll node)

Get the element of a node in a doubly linked list dll.

(dll-first dll)

Return the first element on the doubly linked list dll. Return nil if the list is
empty. The element is not removed.

(dll-nth dll n)

Return the nth node from the doubly linked list dll. n counts from zero. If
dll is not that long, nil is returned. If n is negative, return the -(n+1)th last
element. Thus, (dll-nth dll 0) returns the first node, and (dll-nth dll -1)

returns the last node.

(dll-last dll)

Return the last element on the doubly linked list dll. Return nil if the list is
empty. The element is not removed.

(dll-next dll node)

Return the last element on the doubly linked list dll. Return nil if the list is
empty. The element is not removed.

(dll-previous dll node)

Return the node before node, or nil if node is the first node.

(dll-all dll)

Return all elements on the double linked list dll as an ordinary list.

3.3.4 Removing nodes from a dll

(dll-delete dll node)

Delete node from the doubly linked list dll. Return the element of node.

(dll-delete-first dll)

Delete the first node from the doubly linked list dll. Return the element. Re-
turns nil if dll was empty.

(dll-delete-last dll)

Delete the last node from the doubly linked list dll. Return the element. Re-
turns nil if dll was empty.

Chapter 3: Container Data Types 13

(dll-clear dll)

Clear the doubly linked list dll, i.e. make it completely empty.

3.3.5 Predicates on a dll

(dll-p object)

Return t if object is a doubly linked list, otherwise return nil.

(dll-empty dll)

Return t if the doubly linked list dll is empty, nil otherwise.

3.3.6 Maps and Filters on a dll

(dll-map map-function dll)

Apply map-function to all elements in the doubly linked list dll. The function
is applied to the first element first.

(dll-map-reverse map-function dll)

Apply map-function to all elements in the doubly linked list dll. The function
is applied to the last element first.

(dll-filter dll predicate)

Remove all elements in the doubly linked list dll for which predicate returns
nil.

3.3.7 Miscellaneous dll operations

(dll-length dll)

Returns the number of elements in the doubly linked list dll.

(dll-sort dll predicate)

Sort the doubly linked list dll, stably, comparing elements using predicate.
Returns the sorted list. dll is modified by side effects. predicate is called with
two elements of dll, and should return t if the first element is “less” than the
second.

3.3.8 Debugging dll applications

The data structure used by the dll package contains both forward and backward pointers.
The primitives in Emacs, such as print, know nothing about dlls, so when Emacs tries to
print out a dll it will think that it found a circular structure. Fortunately it detects this
situation and gives an error message, instead of getting stuck in an eternal loop.

The error message can be quite annoying when you are developing an application that
uses dlls. Suppose your code has an error, and you type ‘(setq debug-on-error t)’ to try
to figure out exactly what the error is. If any function in the backtrace has a dll as an
argument, Emacs will abort printing the entire backtrace and only respond with a "Back
at top level" message (or something similar, depending on exactly what you are doing) in
the echo area.

There are two solutions to this problem: patch your emacs so that it detects circular
structures (there have been patches for this floating around the net) or use dll-debug.el.

The file dll-debug.el implements all of the functionality that are present in dll.el, but
it uses a normal, singly linked list instead. This makes some operations, like ‘dll-previous’,

14 Elib - The Emacs Lisp Library

dreadfully slow, but it makes it possible to debug dll applications. dll-debug.el also has
more built-in sanity tests than dll.el.

NOTE: To use the debug package, you must load the library dll-debug before you load
any of the libraries (such as cookie) or your program that use dll. You must also make sure
that you don’t load any byte-compiled version of any file that was compiled with the normal
dll library. Since it contains some macros very strange results will occur otherwise...

When the debug package is loaded, you simply run your code normally, and any bugs
should be easier to trace.

3.4 The Binary Tree Data Type

The binary tree is sometimes an efficient way to store data. When a binary tree is created
a compare function is given to the create function (bintree-create). This function is used
throughout all data entry and deletions into and out of the tree.

To use the binary tree in Elib you must put the line

(require ’bintree)

in your elisp source file.

The following functions are provided by the binary tree in the library:

(bintree-create compare-function)

Create a new empty binary tree. The argument compare-function is a function
which compares two instances of the data type which is to be entered into
the tree. The call (compare-function data1 data2) should return non-nil if
data1 is less than data2, and nil otherwise.

(bintree-p tree)

Return t if tree is an bintree, otherwise return nil.

(bintree-compare-function tree)

Return compare-function given to bintree-create when tree was created.

(bintree-empty tree)

Return t if tree is empty, otherwise return nil.

(bintree-enter tree data)

Enter data into tree. If there already is a data element which is considered equal
to data by compare-function given to bintree-create, the new element will
replace the old one in the tree.

(bintree-delete tree data)

Delete the element which is considered equal to data by compare-function

given to bintree-create. If there is no matching element within the tree,
nothing is done to the tree.

(bintree-member tree data)

Return the element in tree which is considered equal to data by
compare-function given to bintree-create. If there is no such element in
the tree, return nil.

Chapter 3: Container Data Types 15

(bintree-map map-function tree)

Apply map-function to all elements in tree. The function is applied in the order
in which the tree is sorted.

(bintree-first tree)

Return the first element of tree, i.e. the one who is considered first by
compare-function given to bintree-create. If the tree is empty, return nil.

(bintree-last tree)

Return the last element of tree, i.e. the one who is considered last by
compare-function given to bintree-create. If the tree is empty, return nil.

(bintree-copy tree)

Return a copy of tree.

(bintree-flatten tree)

Return a sorted list containing all elements of tree.

(bintree-size tree)

Return the number of elements in tree.

(bintree-clear tree)

Clear tree, i.e. make it totally empty.

3.5 The AVL Tree Data Type

The AVL tree data types provides a balanced binary tree. The tree will remain balanced
throughout its entire life time, regardless of in which order elements are entered into or
deleted from the tree.

Although an AVL tree is not perfectly balanced, it has almost the same performance as if
it was. The definition of an AVL tree is that the difference in depth of the two branches of a
particular node is at most 1. This criterium is enough to make the performance of searching
in an AVL tree very close to a perfectly balanced tree, but will simplify the entering and
deleting of data significantly.

All data that is entered into an AVL tree should be of the same type. If they are not,
there are no way to compare two elements and this is essential for entering and deleting
data from the tree. When a tree is created, a compare function is given to the create
function. This function is used throughout the life of the tree in all subsequent insertions
and deletions.

To use the Elib AVL tree, you must put the line

(require ’avltree)

in your elisp source file.

The following functions are provided by the AVL tree in the library:

(avltree-create compare-function)

Create a new empty AVL tree. The argument compare-function is a function
which compares two instances of the data type which is to be entered into
the tree. The call (compare-function data1 data2) should return non-nil if
data1 is less than data2, and nil otherwise.

16 Elib - The Emacs Lisp Library

(avltree-p tree)

Return t if tree is an avltree, otherwise return nil.

(avltree-compare-function tree)

Return compare-function given to avltree-create when tree was created.

(avltree-empty tree)

Return t if tree is empty, otherwise return nil.

(avltree-enter tree data)

Enter data into tree. If there already is a data element which is considered equal
to data by compare-function given to avltree-create, the new element will
replace the old one in the tree.

(avltree-delete tree data)

Delete the element which is considered equal to data by compare-function

given to avltree-create. If there is no matching element within the tree,
nothing is done to the tree.

(avltree-member tree data)

Return the element in tree which is considered equal to data by
compare-function given to avltree-create. If there is no such element in
the tree, return nil.

(avltree-map map-function tree)

Apply map-function to all elements in tree. The function is applied in the order
in which the tree is sorted.

(avltree-first tree)

Return the first element of tree, i.e. the one who is considered first by
compare-function given to avltree-create. If the tree is empty, return nil.

(avltree-last tree)

Return the last element of tree, i.e. the one who is considered last by
compare-function given to avltree-create. If the tree is empty, return nil.

(avltree-copy tree)

Return a copy of tree.

(avltree-flatten tree)

Return a sorted list containing all elements of tree.

(avltree-size tree)

Return the number of elements in tree.

(avltree-clear tree)

Clear tree, i.e. make it totally empty.

17

4 The Cookie package—nodal data in a buffer

If you want to have structured nodal data in a buffer, the cookie package can be a help to
you.

Cookie is a package that implements a connection between a dll (a doubly linked list)
and the contents of a buffer. Possible uses are dired (have all files in a list, and show them),
buffer-list, kom-prioritize (in the LysKOM elisp client) and others. pcl-cvs.el uses
cookie.el.

4.1 Introduction to cookie terminology

The cookie package uses its own terminology. Here are some important definitions.

cookie A cookie can be any lisp object. When you use the cookie package you specify
a pretty-printer, a function that inserts a printable representation of the cookie
in the buffer.

collection

A collection consists of a doubly linked list of cookies, a header, a footer and
a pretty-printer. It is displayed at a certain point in a certain buffer. (The
buffer and point are selected when the collection is created). The header and
the footer are constant strings. They appear before and after the cookies.
(Currently, once set, they can not be changed).

tin A tin is an object that contains one cookie. There are functions in this package
that given a tin extracts the cookie, or gives the next or previous tin. (All tins
are linked together in a doubly linked list. The previous tin is the one that
appears before the other in the buffer.) You should not do anything with a tin
except pass it to the functions in this package.

Cookie does not affect the mode of the buffer in any way. It merely makes it easy to
connect an underlying data representation to the buffer contents.

A collection is a very dynamic thing. You can easily add or delete cookies. You can sort
all cookies in a collection (you have to supply a function that compares two cookies). You
can apply a function to all cookies in a collection, et c, et c.

Remember that a cookie can be anything. Your imagination is the limit! It is even
possible to have another collection as a cookie. In that way some kind of tree hierarchy can
be created.

4.2 Coding conventions used in the cookie package

All functions that are intended for external use begin with one of the prefixes ‘cookie-’,
‘collection-’ or ‘tin-’. The prefix ‘icookie-’ is currently used for internal functions and
macros. Currently, no global or buffer-local variables are used.

Many functions operate on tins instead of cookies. For most functions, the prefix used
should help tell which kind of object the function uses.

Most doc-strings contains an "Args:" line that lists the arguments.

18 Elib - The Emacs Lisp Library

4.3 Manipulating the entire collection

(collection-create buffer pretty-printer &optional header footer pos)

Create a collection that is displayed in buffer. buffer may be a buffer or a buffer
name. It is created if it does not exist.

pretty-printer should be a function that takes one argument, a cookie, and
inserts a string representing it in the buffer (at point). The string pretty-
printer inserts may be empty or span several lines. A trailing newline will
always be inserted automatically. The pretty-printer should use insert, and
not insert-before-markers.

Optional third argument header is a string that will always be present at the
top of the collection. header should end with a newline. Optionaly fourth
argument footer is similar, and will always be inserted at the bottom of the
collection.

Optional fifth argument pos is a buffer position, specifying where the collection
will be inserted. It defaults to the begining of the buffer. pos will probably
default to the current value of (point) in future releases of Elib, so you should
not depend on this default in cases where it matters.

(collection-empty collection)

Return true if there are no cookies in collection.

(collection-length collection)

Return the number of cookies in collection.

(collection-list-cookies collection)

Return a list of all cookies in collection.

4.4 Inserting cookies in the collection

These functions can be used to insert one or more cookies into a collection. The printed
representation will immediately and automatically be updated by the cookie package. (It
will call the pretty-printer that was specified to collection-create).

(cookie-enter-first collection cookie)

Enter cookie first in the cookie collection collection.

(cookie-enter-last collection cookie)

Enter cookie last in the cookie collection collection.

(cookie-enter-after-tin collection tin cookie)

Enter cookie into collection, immediately after tin.

(cookie-enter-before-tin collection tin cookie)

Enter cookie into collection, immediately before tin.

(collection-append-cookies (collection cookie-list))

Insert all cookies in the list cookie-list last in collection.

Chapter 4: The Cookie package—nodal data in a buffer 19

4.5 Tins and cookies

(tin-cookie collection tin)

This function can be used to extract a cookie from tin. The collection that tin
is present in must also be specified as collection.

4.6 Deleting cookies

There are a couple of different ways to delete cookies from the collection.

(tin-delete collection tin)

Delete tin from collection. The cookie that is stored in tin is returned.

(cookie-delete-first collection)

Delete first cookie in collection and return it. Returns nil if there are no cookies
left in collection.

(cookie-delete-last collection)

Delete last cookie in collection and return it. Returns nil if there are no cookies
left in collection.

The following two functions can be used to delete several cookies that fulfills certain
criteria.

(collection-filter-cookies collection predicate &rest extra-args)

Remove all cookies in collection for which predicate returns nil. Note that the
buffer for collection will be current-buffer when predicate is called. predicate
must restore the current buffer before it returns if it changes it.

The predicate is called with cookie as its first argument. If any extra-args
are given to collection-filter-cookies they will be passed unmodified to
predicate.

(collection-filter-tins collection predicate &rest extra-args)

This is like collection-filter-cookies, but predicate is called with a tin
instead of a cookie.

And finally, a way to delete all cookies in one swift function call:

(collection-clear collection)

Remove all cookies in collection.

4.7 Collection as a Doubly linked list

The functions in this section treat the collection as a doubly linked list.

(tin-nth collection n)

Return the nth tin. n counts from zero. nil is returned if there is less than n
cookies. If n is negative, return the -(n+1)th last element. Thus, (tin-nth dll

0) returns the first node, and (tin-nth dll -1) returns the last node.

Use tin-cookie to extract the cookie from the tin (or use cookie-nth instead).

(cookie-nth collection n)

Like tin-nth, but the cookie is returned instead of the tin.

20 Elib - The Emacs Lisp Library

(tin-next collection tin)

Get the next tin. Returns nil if tin is nil or refers to the last cookie in collection.

(tin-previous collection tin)

Get the previous tin. Returns nil if tin is nil or refers to the first cookie in
collection.

(cookie-sort collection predicate)

Sort the cookies in collection, stably, comparing elements using predicate. pred-
icate is called with two cookies, and should return ‘t’ if the first cookie is less
than the second.

All cookies will be refreshed when the sort is complete.

(cookie-first collection)

Return the first cookie in collection. The cookie is not removed.

(cookie-last collection)

Return the last cookie in collection. The cookie is not removed.

4.8 Scanning the list

(cookie-map map-function collection &rest map-args)

Apply map-function to all cookies in collection. map-function is applied to the
first element first. If map-function returns non-nil the cookie will be refreshed
(its pretty-printer will be called once again).

Note that the buffer for collection will be current buffer when map-function is
called. map-function must restore the current buffer to buffer before it returns,
if it changes it.

If more than two arguments are given to cookie-map, remaining arguments will
be passed to map-function.

(cookie-map-reverse map-function collection &rest map-args)

Like cookie-map, but map-function will be applied to the last cookie first.

(collection-collect-tin collection predicate &rest predicate-args)

Select cookies from collection using predicate. Return a list of all selected tins.

predicate is a function that takes a cookie as its first argument.

The tins on the returned list will appear in the same order as in the buffer. You
should not rely on in which order predicate is called.

Note that the buffer the collection is displayed in is current-buffer when predi-
cate is called. predicate must restore current-buffer if it changes it.

If more than two arguments are given to collection-collect-tin the remain-
ing arguments will be passed to predicate.

(collection-collect-cookie collection predicate &rest predicate-args)

Like collection-collect-tin, but a list of cookies is returned.

Chapter 4: The Cookie package—nodal data in a buffer 21

4.9 Operations that affect the buffer

(collection-buffer collection)

Return the buffer that collection is displayed in.

(collection-refresh collection)

Refresh all cookies in collection.

The pretty-printer that was specified when the collection was created will be
called for all cookies in collection.

Note that tin-invalidate is more efficient if only a small number of cookies
needs to be refreshed.

(tin-invalidate collection &rest tins)

Refresh some cookies. The pretty-printer for collection will be called for all
tins.

(collection-set-goal-column collection goal)

Set goal-column for collection. goal-column is made buffer-local. This function
will be obsoleted in the next release of Elib. Instead, there is going to be a
function that given a cookie will return a position where the cursor should be
stored. The details are not yet decided.

(tin-goto-previous collection pos arg)

Move point to the argth previous cookie. Don’t move if we are at the first
cookie, or if collection is empty. Returns the tin we move to.

(tin-goto-next collection pos arg)

Like tin-goto-previous, but move towards the end of the buffer instead.

(tin-goto collection tin)

Move point to tin.

(tin-locate collection pos &optional guess)

Return the tin that pos (a buffer position) is within.

pos may be a marker or an integer. guess should be a tin that it is likely that
pos is near.

If pos points before the first cookie, the first cookie is returned. If pos points
after the last cookie, the last cookie is returned. If collection is empty, nil is
returned.

4.10 Debugging cookie applications

Since the cookie package uses dll, cookie applications can be hard to debug. Fortunately,
the same technique can be used here—just load dll-debug prior to loading cookie. See
Section 3.3.8 [Debugging dll applications], page 13.

Warning! Don’t load a byte-compiled cookie.elc that was compiled using dll (as
opposed to dll-debug) when you have dll-debug in memory. Your Emacs will be seriously
confused.

23

5 String functions

To use the string functions in Elib you have to put the following line into your elisp source
file:

(require ’string)

The following string functions are provided with Elib.

(string-replace-match regexp string newtext &optional literal global)

This function tries to be a string near-equivalent to the elisp function
replace-match. It returns a string with the first text matched by regexp in
string replaced by newtext. If no match is found, nil is returned. If optional
argument global is non-nil, all occurances matching regexp are replaced
instead of only the first one.

If optional argument literal is non-nil, then newtext is inserted exactly as it
is. If it is nil (which is the default), then the character \ is treated specially.
If a \ appears in newtext, it can start any one of the following sequences:

\& \& stands for the entire text being replaced.

\n \n stands for the nth subexpression in the original regexp. Subex-
pressions are those expressions grouped inside of \(...\). n is a
digit.

\\ \\ stands for a single \ in newtext.

Any other character after the \ will just be copied into the string.

(string-split pattern string &optional limit)

Split the string string on the regexp pattern and return a list of the strings
between the matches. If the optional numerical argument limit is >= 1, only
the first limit elements of the list are returned.

For example, the call

(string-split "[\t]+" "Elisp programming is fun.")

will return ("Elisp" "programming" "is" "fun."), but the call

(string-split " " "Elisp programming is fun." 3)

will return ("Elisp" "programming" "is").

25

6 Read functions

Elib provides a number of functions for reading data from the minibuffer. To use them in
your own elisp programs, put the following line into you source file:

(require ’read)

The following functions are provided by read.

(read-number &optional prompt default)

Read a number from the minibuffer. If optional argument prompt is non-
nil, the user is prompted using prompt, otherwise the prompt string Enter a

number: is used. If optional argument default is non-nil, it is written within
parenthesis after the prompt string. default can be either a number or of the
type which (interactive "P") generates.

(read-num-range low high &optional prompt show-range)

Read a number from the minibuffer. The number returned will be forced to
lie between low and high. If prompt is non-nil, the user is prompted using
prompt, otherwise the prompt string Enter a number: is used. If show-range
is non-nil, the prompt will show the range within parenthesis to the user.

(read-silent prompt &optional showchar)

Read a string in the minibuffer without echoing. The following characters are
special when entering the string:

DEL Delete the last character in the input buffer.

C-u Clear the input buffer.

RET End the reading of the string.

Newline Same as RET.

If optional argument showchar is non-nil, one of these characters will be dis-
played for each character input by the user.

This function is well suited to read a password from the user, but beware of the
function (view-lossage) which displays the last 100 keystrokes, even hidden
ones.

27

7 Future enhancements

Elib is still under development and needs a number of enhancements to be called fairly
complete. Here is a list of wishes of functions and data types which we would like to enter
into Elib in future releases:

• Numerical data types such as Floating point numbers, Complex numbers, Arbitrarily
long integers, etc. (Perhaps we can get these from the freely distributable elisp package
calc.)

• Other container data types such as Priority queues, 2-3-trees, Hash tables, Sets, etc.

• Other implementations of old container data types. For instance, are vector implemen-
tations of stacks and queues faster than the current ones using cons cells?

• Miscellaneous other small functions.

7.1 Contributions

We are grateful for all donations of code that we can receive. However, your code will
be still more useful if you also provide documentation and code to test your new library
functions.

29

8 Reporting bugs

This is an early test release of the GNU emacs lisp library. Undoubtedly there are numerous
bugs remaining, both in the elisp source code and in the documentation. If you find a bug
in either, please send a bug report to elib-maintainers@lysator.liu.se. We will try to
be as quick as possible in fixing the bugs and redistributing the fixes.

i

Table of Contents

GNU ELIB GENERAL PUBLIC LICENSE 1
COPYING POLICIES . 1
NO WARRANTY . 2

1 Installation . 5
1.1 Installation of the elisp library . 5
1.2 Installation of the on-line manual. 5
1.3 How to make typeset documentation from elib.texinfo 6

2 What is Elib? . 7
2.1 Contributors to Elib . 7
2.2 Where can I get Elib? . 7

3 Container Data Types . 9
3.1 The Stack Data Type . 9
3.2 The Queue Data Type . 10
3.3 The Doubly Linked List Data Type . 11

3.3.1 Creating a Doubly Linked List . 11
3.3.2 Entering elements in a dll . 12
3.3.3 Accessing elements of a dll . 12
3.3.4 Removing nodes from a dll . 12
3.3.5 Predicates on a dll . 13
3.3.6 Maps and Filters on a dll . 13
3.3.7 Miscellaneous dll operations . 13
3.3.8 Debugging dll applications . 13

3.4 The Binary Tree Data Type . 14
3.5 The AVL Tree Data Type . 15

4 The Cookie package—nodal data in a buffer . . 17
4.1 Introduction to cookie terminology . 17
4.2 Coding conventions used in the cookie package 17
4.3 Manipulating the entire collection . 18
4.4 Inserting cookies in the collection . 18
4.5 Tins and cookies . 19
4.6 Deleting cookies . 19
4.7 Collection as a Doubly linked list . 19
4.8 Scanning the list . 20
4.9 Operations that affect the buffer . 21
4.10 Debugging cookie applications . 21

5 String functions . 23

ii

6 Read functions . 25

7 Future enhancements . 27
7.1 Contributions . 27

8 Reporting bugs . 29

	GNU ELIB GENERAL PUBLIC LICENSE
	COPYING POLICIES
	NO WARRANTY

	1 Installation
	Installation of the elisp library
	Installation of the on-line manual.
	How to make typeset documentation from elib.texinfo

	2 What is Elib?
	Contributors to Elib
	Where can I get Elib?

	3 Container Data Types
	The Stack Data Type
	The Queue Data Type
	The Doubly Linked List Data Type
	Creating a Doubly Linked List
	Entering elements in a dll
	Accessing elements of a dll
	Removing nodes from a dll
	Predicates on a dll
	Maps and Filters on a dll
	Miscellaneous dll operations
	Debugging dll applications

	The Binary Tree Data Type
	The AVL Tree Data Type

	4 The Cookie package---nodal data in a buffer
	Introduction to cookie terminology
	Coding conventions used in the cookie package
	Manipulating the entire collection
	Inserting cookies in the collection
	Tins and cookies
	Deleting cookies
	Collection as a Doubly linked list
	Scanning the list
	Operations that affect the buffer
	Debugging cookie applications

	5 String functions
	6 Read functions
	7 Future enhancements
	Contributions

	8 Reporting bugs

